4th and Goal To Go...

“How Low Should We Go?”:
Evaluating New Lipid Lowering Therapies

Catherine Bourg Rebitch, PharmD, BCACP
Clinical Associate Professor

UNIVERSITY OF GEORGIA
College of Pharmacy
Disclosure

The presenter has nothing to disclose concerning possible financial or personal relationships with any entities mentioned in this presentation.
My Two “Homes Away from Home”
Learning Objectives

• Summarize recommendations from clinical practice guidelines regarding lipid lowering therapy.

• Discuss clinical evidence and place in therapy for proprotein convertase subtilisin kexin type 9 (PCSK-9) inhibitors.

• Develop a therapeutic plan for a patient with complex lipid lowering needs.
Outline

Guideline overview
- Lipid lowering targets- a historical perspective

Injectable therapy- new kids on the block
- Decision pathways for non-statin agents

Patient case discussion
Clinical Significance

U.S. adults...

• ~70% report recent lipid profile

• ~55% who are indicated for lipid lowering medication are currently taking it

• ~37% have elevated low-density lipoprotein (LDL) cholesterol levels

http://www.cdc.gov/cholesterol/facts.htm
Patient Case

- 56 year old African American male
- Recently started on lipid lowering therapy after a hospitalization for MI
- PMH: Hypertension x 4 years, GERD x 2 years, STEMI 3 months ago
- Social history: quit smoking after hospitalization; no alcohol use reported; wife and patient recently met with dietitian
- Family history: mother living, age 78, with diabetes and hypertension; father deceased (stroke, age 60)
Patient Case

- Current Medications
 - HCTZ 25mg QAM
 - Amlodipine 10mg Qdaily
 - Metoprolol tartrate 50mg BID
 - Aspirin 81mg Qdaily
 - Clopidogrel 75mg Qdaily
 - Atorvastatin 80mg Qdaily
 - Lansoprazole 30mg Qdaily

- Recent Labs
 - Baseline lipid panel (October 2017): TC 225, TG 160, LDL 176, HDL 32
 - Lipid panel today: TC 205, TG 150, LDL 135, HDL 36
 - BP today: 128/72; HR 66
Guidance Statements

- NCEP Adult Treatment Panel (ATP) 2001/2004 update
- American College of Cardiology/American Heart Association (ACC/AHA) 2013
- National Lipid Association 2015
- ACC Non-Statin Decision Pathway 2016/2017 update
- American Association of Clinical Endocrinologists 2017

Grundy SM. Then and Now: ATP III vs. IV. American College of Cardiology December 2013.
ACC/AHA Guideline

• Specific lipid goals (LDL and non-HDL targets) eliminated

• New risk estimation calculator

• Treatment recommendations focus on “benefit groups”

• Primary drug therapy focus is the use of statins
ASCVD Risk Calculator [Plus]

• Provides estimation of 10 year risk for those 40-79 years of age
 – Provides lifetime risk if 20-59 years of age

• Based on risk factors (sex, age, race, total cholesterol, LDL & HDL cholesterol, SBP, treatment of HTN, diabetes, smoking status, on statin, on aspirin)
 – Based on Pooled Cohort Equations

Secondary prevention of ASCVD

LDL 70-189 mg/dL and 10 yr ASCVD risk ≥7.5% or 5 to <7.5%

Benefit Groups

Diabetes

LDL ≥190 mg/dL

High intensity statin

Moderate intensity statin if 10 year ASCVD risk $\geq 5\%$ and $<7.5\%$

Moderate to high intensity statin if 10 year ASCVD risk $\geq 7.5\%$

Benefit Groups

Moderate intensity statin

High intensity statin if 10 year ASCVD risk $\geq 7.5\%$

High intensity statin

Statin Potency

<table>
<thead>
<tr>
<th>High-Intensity</th>
<th>Moderate-Intensity</th>
<th>Low-Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lowers LDL-C by (~\geq 50%))</td>
<td>(Lowers LDL-C by (\sim 30% \text{ to } < 50%))</td>
<td>(Lowers LDL-C by (\sim < 30%))</td>
</tr>
<tr>
<td>Atorvastatin 40-80mg</td>
<td>Atorvastatin 10-20mg</td>
<td>Simvastatin 10mg</td>
</tr>
<tr>
<td>Rosuvastatin 20-40mg</td>
<td>Rosuvastatin 5-10mg</td>
<td>Pravastatin 10-20mg</td>
</tr>
<tr>
<td></td>
<td>Simvastatin 20-40mg</td>
<td>Lovastatin 20mg</td>
</tr>
<tr>
<td></td>
<td>Pravastatin 40-80mg</td>
<td>Fluvastatin 20-40mg</td>
</tr>
<tr>
<td></td>
<td>Lovastatin 40mg</td>
<td>Pitavastatin 1mg</td>
</tr>
<tr>
<td></td>
<td>Fluvastatin XL 80mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluvastatin 40mg BID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitavastatin 2-4mg</td>
<td></td>
</tr>
</tbody>
</table>

National Lipid Association (NLA)

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Criteria</th>
<th>Treatment Goal Non-HDL-C (mg/dL) LDL-C (mg/dL)</th>
<th>Consider Drug Therapy Non-HDL-C (mg/dL) LDL-C (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0-1 major ASCVD risk factors; consider other risk indicators</td>
<td><130; <100</td>
<td>≥ 190; ≥ 160</td>
</tr>
<tr>
<td>Moderate</td>
<td>2 major ASCVD risk factors; consider risk scoring and other indicators</td>
<td><130; <100</td>
<td>≥ 160; ≥ 130</td>
</tr>
</tbody>
</table>
| High | ≥ 3 major ASCVD risk factors
| | Diabetes (0-1 major ASCVD risk factors)
| | Chronic kidney disease stage 3b or 4
| | LDL-C ≥ 190 mg/dL
| | Quantitative risk score indicating high risk | <130; <100 | ≥ 130; ≥ 100 |
| Very High | ASCVD
| | Diabetes (≥ 2 other major ASCVD risk factors OR evidence of end-organ damage) | <100; <70 | ≥ 100; ≥ 70 |
American Association of Clinical Endocrinologists (AACE)

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Criteria</th>
<th>Treatment Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LDL-C (mg/dL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-HDL (mg/dL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apo B (mg/dL)</td>
</tr>
<tr>
<td>Low</td>
<td>• 0 risk factors</td>
<td><130; <160; not recommended</td>
</tr>
<tr>
<td>Moderate</td>
<td>• ≤ 2 risk factors and 10 year risk < 10%</td>
<td><100; <130; <90</td>
</tr>
</tbody>
</table>
| High | • ≥ 2 risk factors and 10 year risk 10-20%
 • Diabetes or CKD stage 3 or 4 | <100; <130; <90 |
| Very High | • Recent hospitalization for acute coronary syndrome, ASCVD, 10 year risk > 20%
 • Diabetes or CKD stage 3 or 4, with 1 or more risk factors
 • Heterozygous familial hypercholesterolemia (HeFH) | <70; <100; <80 |
| Extreme | • Progressive ASCVD including unstable angina even after achieving LDL < 70mg/dL
 • ASCVD + Diabetes, CKD stage 3 or 4, or HeFH
 • Premature ASCVD (<55 male, <65 female) | <55; <80; <70 |
How Low Should We Go?

How Low is too Low?

<table>
<thead>
<tr>
<th>ACC/AHA</th>
<th>The Lower the Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consider decreasing statin dose if two consecutive LDL levels are <40 mg/dL</td>
<td>Meta-analyses data</td>
</tr>
</tbody>
</table>

The Lower the Better

- LDL <50 mg/dL resulted in significantly lower risk for major cardiovascular events, even compared with LDL between 75 and 100 mg/dL [adjusted HR 0.81; 95% CI: 0.70-0.95]¹

- Individuals with a low baseline LDL (<70 mg/dL) experienced further benefit (decreased event rate) with additional lowering²

- No significant evidence that further lowering of LDL [evaluating trials of more versus less intensive therapy] produced adverse effects²

• Current lipid lowering guidelines recommend:
 • Assessment of cardiovascular risk
 • LDL-lowering based on risk and lipid parameters
 • Adjunctive therapy with lifestyle modifications

• Statins have been the cornerstone of LDL-lowering therapy for decades

• In high risk patients, the question remains...
 • Which therapies, either as monotherapy or in addition to statins, lower LDL and reduce cardiovascular event rate?
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK-9)

- An enzyme (a serine protease) synthesized and secreted by the liver
- LDL receptor: binds circulating LDL and internalizes this complex into the hepatocyte...results in elimination, allowing for recycling of the LDL receptor to the hepatocyte surface
 - Binding of PCSK-9 to LDL receptor prevents recycling
 - Cell surface receptor expression reduced
 - Reduces capacity for LDL particles to be removed from circulation
PCSK-9 Inhibitors
Alirocumab (Praluent®)

• Approved July 2015

• Indications
 • As adjunct to diet and maximally tolerated statin therapy, for the treatment of adults with: HeFH OR clinical ASCVD, who require additional LDL lowering

• Dosing
 • Initial: 75mg subcutaneously Q2 weeks (can be increased to 150mg)
 • Alternative starting dose: 300mg Q4 weeks

• How Supplied

75 mg/1 mL pen

150 mg/1 mL pen
Evolocumab (Repatha®)

- Approved August 2015

- Indications
 - Reduce risk of MI, stroke, and coronary revascularization in adults with established ASCVD
 - As adjunct to diet, alone or in combination with other therapies, for the treatment of adults with: primary hyperlipidemia, HeFH, or HoFH who require additional LDL lowering

- Dosing
 - 140mg subcutaneously Q 2 weeks OR 420mg monthly
 - *HoFH: monthly dosing

- How Supplied
PCSK-9 Inhibitors: Clinical Outcomes

- Meta-analysis of 35 phase 2/3 randomized controlled trials

Cardiovascular & efficacy endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause and CV mortality</td>
</tr>
<tr>
<td>MI*</td>
</tr>
<tr>
<td>Unstable angina requiring hospitalization</td>
</tr>
<tr>
<td>CHF exacerbation requiring hospitalization</td>
</tr>
<tr>
<td>Stroke*</td>
</tr>
<tr>
<td>Coronary revascularization*</td>
</tr>
<tr>
<td>% change from baseline in LDL, HDL, total cholesterol, apo-B, lipoprotein(a)</td>
</tr>
</tbody>
</table>

Safety endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurocognitive adverse events</td>
</tr>
<tr>
<td>New onset or worsening of pre-existing diabetes</td>
</tr>
<tr>
<td>Increase in CK (>3x ULN)</td>
</tr>
<tr>
<td>Increase in LFTs (>3x ULN)</td>
</tr>
<tr>
<td>Myalgia</td>
</tr>
<tr>
<td>Treatment-emergent serious adverse events</td>
</tr>
</tbody>
</table>

*Significant difference between groups
PCSK-9 Inhibitors: Lipid Endpoints

Mean Percentage Change

- LDL Reduction (vs ezetimibe)
- LDL Reduction (vs placebo)
- Change in HDL (vs placebo)
- Reduction in Total Cholesterol (vs placebo)

Percentage Change

Figure 1. Timeline of randomized controlled trials of alirocumab and evolocumab. FDA indicates US Food and Drug Administration; HeFH, heterozygous familial hypercholesterolemia; HoFH, homozygous familial hypercholesterolemia.
Cardiovascular Outcomes: OSLER 1 & 2

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>n= 4465; mean age 58 years; ~80% with 1+ CV risk factor; ~70% on statin; median baseline LDL ~120mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Combination of 2 open-label randomized trials (vs. standard therapy) Patients had completed one “parent trial”</td>
</tr>
</tbody>
</table>
| Outcome Measures | • Incidence of adverse events
• Percent change in LDL level & other lipid parameters
• Adjudicated cardiovascular events (pre-specified, exploratory, composite outcome) |
| Results | • Similar rates of CK and LFT elevation; neurocognitive events < 1%
• LDL reduction ~61% (week 12)
• Patients in evolocumab group had significantly lower rate of CV events (at 1 year, 0.95% vs 2.18%; HR 0.47; 95% CI 0.28-0.78; p=0.003) |
| Conclusions | Evolocumab + standard therapy, compared with standard therapy alone, significantly reduced LDL, and the incidence of CV events. |
Cardiovascular Outcomes: ODYSSEY LONG TERM

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>n= 2341; mean age 60 years; ~70% with CVD, ~35% with diabetes, ~17% HeFH; >99% on statin; mean baseline LDL ~122mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Patients randomized (2:1) to alirocumab 150mg q2weeks or placebo</td>
</tr>
</tbody>
</table>
| Outcome Measures | • Incidence of adverse events
• Percent change in LDL level from baseline to week 24
• Adjudicated cardiovascular events (post hoc, composite outcome) |
| Results | • Higher rates of myalgia (p < 0.05), neurocognitive events, and ophthalmologic events with alirocumab
• LDL reduction ~61% (week 24, consistent through week 78)
• Rate of major adverse CV events lower with alirocumab (1.7% vs 3.3%; HR 0.52; 95% CI 0.31-0.90; p=0.02) |
| Conclusions | Alirocumab + statin therapy significantly reduced LDL, and in a post hoc analysis, showed evidence of CV event rate reduction. |
Cardiovascular Outcomes: GLAGOV

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>n= 968; mean age 60 years; ~35% previous MI, 39% previous PCI, ~21% with diabetes; ~98% on statin; mean baseline LDL ~93mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Patients randomized (1:1) to evolocumab 420mg q4weeks or placebo Intravascular ultrasonography (single artery), baseline and week 78</td>
</tr>
</tbody>
</table>
| Outcome Measures | • Nominal change in percent atheroma volume (PAV)
• Nominal change in total atheroma volume and percentage of patients demonstrating plaque regression
• Safety and tolerability |
| Results | • Between group differences; LS means (95% CI)
 PAV (%): -1.0 (-1.8 to -0.64); TAV (mm³): -4.9 (-7.3 to -2.5)
• Patients with regression: 17% PAV, 12.% TAV; p <0.001 respectively
• Rates of myalgia and neurocognitive events not significantly different |
| Conclusions | After 76 weeks of treatment, addition of evolocumab to statin therapy resulted in a greater decrease in PAV compared to placebo. |
Cardiovascular Outcomes: FOURIER

<table>
<thead>
<tr>
<th>Patient Population</th>
<th>n= 27,564; mean age 62.5 years; ~81% previous MI, 19% previous stroke, ~13% with PAD; ~99% on statin; mean baseline LDL ~92mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Patients randomized (1:1) to evolocumab (either 140mg q2weeks or 420mg q4weeks) or placebo</td>
</tr>
</tbody>
</table>
| Outcome Measures | • Primary: major CV events (CV death, MI, stroke, hospitalization for unstable angina, or coronary revascularization)
 • Secondary: major CV events (CV death, MI, or stroke)
 • Safety (adverse events) |
| Results | • Primary: 9.8% vs. 11.3%; HR 0.85 [95% CI 0.79-0.92]
 • Secondary: 5.9% vs. 7.4%; HR 0.80 [95% CI 0.73-0.88]
 • No significant between group differences, with the exception of injection-site reactions (2.6% vs 1.6%) |
| Conclusions | Adding evolocumab to statin therapy reduced the risk of CV events, and patients with ASCVD benefit from LDL lowering below current targets. |
Non-Statin Decision Pathway

Figure 2A Patients ≥21 Years of Age with Stable Clinical ASCVD without Comorbidities, on Statin for Secondary Prevention

- Patients with stable clinical ASCVD without comorbidities,* on statin for secondary prevention
 - Patient has ≥50% LDL-C reduction (may consider LDL-C <70 mg/dL or non-HDL-C <100 mg/dL) on maximally tolerated statin therapy†
 - YES
 - NO
 - Address statin adherence.
 - Intensity lifestyle (may consider phytosterols).
 - Increase to high-intensity statin if not already taking.
 - Evaluate for statin intolerance if unable to tolerate moderate-intensity statin.¶ Consider referral to lipid specialist if statin intolerant.
 - 5. Control other risk factors.
 - Patient has ≥50% LDL-C reduction (may consider LDL-C <70 mg/dL or non-HDL-C <100 mg/dL) on maximally tolerated statin therapy†
 - YES
 - NO
 - CLINICIAN-PATIENT DISCUSSION FACTORS TO CONSIDER
 1. Potential for additional ASCVD risk reduction from addition of non-statin therapy to lower LDL-C (see Table 5)
 2. Potential for adverse events or drug-drug interactions from addition of non-statin therapy (see Table 4)
 3. Patient preferences (see Table 5)
 - Optional non-statin medications to consider
 - Consider ezetimibe first§
 - NO
 - Consider adding or replacing with PCSK9 inhibitor second¶¶
 - YES
 - Continue to monitor adherence to medications and lifestyle, and LDL-C response to therapy.
 - Decision for no additional medication

* LDL-C is low-density lipoprotein cholesterol.
† LDL-C goal for secondary prevention of ASCVD.
¶ Additional treatment options may include ezetimibe, bile acid sequestrants, or fibrate.
§ Ezetimibe may be considered first.
¶¶ PCSK9 inhibitors may be considered next.

References

Non-Statin Decision Pathway

Figure 2B Patients ≥21 Years of Age with Clinical ASCVD with Comorbidities, on Statin for Secondary Prevention

- **Patients with clinical ASCVD with comorbidities,* on statin for secondary prevention**
 - **Patient has ≥50% LDL-C reduction (may consider LDL-C < 70 mg/dL or non-HDL-C < 100 mg/dL) on maximally tolerated statin therapy†**
 - **YES**
 - **NO**
 - **1. Address statin adherence.**
 - **2. Intensify lifestyle (may consider phytosterols).**
 - **3. Increase to high-intensity statin if not already taking.**
 - **4. Evaluate for statin intolerance if unable to tolerate moderate-intensity statin.‡**
 - Consider referral to lipid specialist if statin intolerant.
 - **5. Control other risk factors.**

- **Patient has ≥50% LDL-C reduction (may consider LDL-C < 70 mg/dL or non-HDL-C < 100 mg/dL) on maximally tolerated statin therapy†**
 - **YES**
 - **NO**
 - **CLINICIAN-PATIENT DISCUSSION FACTORS TO CONSIDER**
 1. Potential for additional ASCVD risk reduction from addition of non-statin therapy to lower LDL-C (see Table 5)
 2. Potential for adverse events or drug-drug interactions from addition of non-statin therapy (see Table 4)
 3. Patient preferences (see Table 5)

- **Optional non-statin medications to consider**
 - Consider either ezetimibe§ or PCSK9 inhibitor as initial non-statin agent, and addition of other agent second if needed¶

- **Patient has ≥50% LDL-C reduction (may consider LDL-C < 70 mg/dL or non-HDL-C < 100 mg/dL) on maximally tolerated statin/other medications†**
 - **YES**
 - **NO**
 - **Decision for no additional medication**
 - **Continue to monitor adherence to medications and lifestyle, and LDL-C response to therapy.**
Non-Statin Decision Pathway

• Patients with ASCVD
 • Risk reduction thresholds: LDL reduction ≥ 50%; also consider LDL < 70 mg/dL or non-HDL < 100 mg/dL
 • Lower LDL levels are safe and optimal

• ASCVD + comorbidities
 • Consider either ezetimibe or a PCSK-9 inhibitor based on:
 • Additional percent LDL lowering desired, patient specific factors and preferences, cost, route of administration

• Additional high risk factors
Economic Impact

PCSK-9 Inhibitors
>$14,000 per year

Atorvastatin 80mg
<$125 per year
Economic Impact

Central Illustration: Economics of PCSK9 Inhibitors

Patient Assistance Programming

• MyPRALUENT® Copay Offer and RepathaReady®
 – Helps commercially insured patients with out-of-pocket copay costs

• Third party prior authorizations?

• Uninsured patients?

https://www.praluent.com/copay-card
https://www.repatha.com/insurance-coverage/
Patient Case

• 56 year old African American male

• Recently started on lipid lowering therapy after a hospitalization for MI

• PMH: Hypertension x 4 years, GERD x 2 years, STEMI 3 months ago

• Social history: quit smoking after hospitalization; no alcohol use reported; wife and patient recently met with dietitian

• Family history: mother living, age 78, with diabetes and hypertension; father deceased (stroke, age 60)
Patient Case

• Current Medications
 – HCTZ 25mg QAM
 – Amlodipine 10mg Qdaily
 – Metoprolol tartrate 50mg BID
 – Aspirin 81mg Qdaily
 – Clopidogrel 75mg Qdaily
 – **Atorvastatin 80mg Qdaily**
 – Lansoprazole 30mg Qdaily

Recent Labs

• Baseline lipid panel (October 2017): TC 225, TG 160, **LDL 176**, HDL 32
• Lipid panel today: TC 205, TG 150, **LDL 135**, HDL 36
• BP today: 128/72; HR 66

...What’s the next best step?
Summary

• New data and guidance statements support lowering LDL below historical targets for high risk patients.

• PCSK-9 inhibitors, although expensive, may offer an additional option to lower LDL and reduce cardiovascular events in high risk patients.

• Clinical outcomes, cost, and patient preference should be considered when choosing lipid lowering therapy.
Learning Objectives

• Summarize recommendations from clinical practice guidelines regarding lipid lowering therapy.

• Discuss clinical evidence and place in therapy for proprotein convertase subtilisin kexin type 9 (PCSK-9) inhibitors.

• Develop a therapeutic plan for a patient with complex lipid lowering needs.
Questions/Comments?