Ascending Aortic Pathology: Three Things You Need to Know

Cullen D. Morris, M.D.

Medical Director CT Surgery PARMC

Cullen.morris@piedmont.org

O: 706-475-1950, c: 404-275-2879

Cullen D. Morris, M.D. Personal/Professional Financial Relationships with Industry

External Industry Relationships *	Company Name	Role
Equity, stock, or options in biomedical industry companies or publishers	None	
Board of Directors or officer	None	
Royalties from Emory/PHI or from external entity	None	
Industry funds to Emory/PHI for my research	None	
Other	None	

Three Things

- Diagnosis
- Prevention
- When to refer

Three Things

- Ctscan chest w or w/o
- Treat hypertension/stop smoking, aggressively treat CAD, pulm disease
- 5.0 cm (*), close scrutiny on women

Three More Things

- Aneurysms ascending aorta and arch
- Type A and B dissections
- Will not discuss thoracoabdominal or AAA

n

ess

flows

ind

е

7

Criado, Ishimaru

Aneurysm

- ⇒50% Greater than normal
- ⇒ Size reflective of gender, age, BSA
- ⇒ Contributing factors
 - ⇒ Connective tissue
 - \Rightarrow Htn
 - ⇒ Family history
 - ⇒PMHx cashd, pulm disease, PVD

Aortic Root Aneurysm

- ⇒ Less associated with atherosclerosis
- ⇒ Annuloaortic ectasia
- ⇒ Aortic valve regurgitation
- ⇒ Bicuspid AoV
- → Heritable disorders of connective tissue (Marfan's)
- ⇒ Dissection

Ascending Aneurysm

- Medial degeneration
 - ⇒ Less associated with atherosclerosis
 - ⇒ More with HTN
 - ⇒ Idiopathic
 - → Heritable disorders of connective tissue
 - ⇒ Dissection

Arch Aneurysm

- Medial degeneration
 - ⇒ Some atherosclerosis
 - *→ More with HTN*
 - **⇒** Idiopathic
 - ⇒ Heritable disorders of connective tissue
 - ⇒ Dissection usually not isolated

Descending Thoracic Aneurysm

- HTN
 - **⇒** Atherosclerosis
 - **⇒** Dissection
 - ⇒ Sometimes saccular

Thoracoabdominal Aneurysm

- HTN
 - **⇒** Atherosclerosis
 - ⇒ Dissection

Surgical Outcomes

- ⇒ Elective aneurysm repair: 2-9% mortality
 - ⇒ Stroke, renal failure, etc.
- ⇒ Dissection: 25 57% mortality
- ⇒ Rupture: higher

DAVIES ET AL YEARLY RUPTURE OR DISSECTION RATES Ann Thorac Surg 2002;73:17-28

Table 1. Demographic Data on 304 Patients With Thoracic Aortic Aneurysms^a

Variable	No Ponets	% Mean Median Range
Sex (male)	179	58.9 methods of statistical analysis builded of sed ties
Age at presentation (y)		59.8 65.8 8.8 to 93.7
Initial aortic size (cm)		5.0 4.7 3.5 to 11.0
Radiologic follow-up (mo)		43.1 31.6 0.0 to 262.6
Marfan syndrome	28	(re 9.2 re, dissection, death), Mantol-Housed y test for
Aneurysm size		
3.5 to 3.9 cm	33	10.9
4.0 to 4.9 cm	133	43.8 and an footh and the Wilcons for the
5.0 to 5.9 cm	78	25.7
≥ 6.0 cm	60	19.7 to a good Leeded respection analysis of the
Aneurysm location		
Ascending	219	72.0 factors for ructure or dissection I limitely only
Arch	18	ma5.9 (Kaplan-Meier) were calculated want the
Descending	28	9.21
Thoracoabdominal	39	12.8 Cart NCI with the toward and the desired
Hypertension (n = 240)	142	59.1
Cardiac disease (n = 219)	96	43.8
Tobacco use (n = 220)	81	36.8
Pulmonary disease (n = 225)	47	20.9
Carotid disease (n = 209)	23	11.0
Renal disease (n = 220)	30	13.6
Coronary artery disease (n = 304)	82	27.0
Congestive heart failure (n = 304)	34	11.2
Stroke or transient ischemic attacks (n = 304)	25	8.2
Abdominal aortic aneurysm (n = 304)	31	10.2

^{*} Totals may not add up to 100% because of rounding.

⇒ Size & annual risk of rupture, death, dissection

 \Rightarrow 4 - 4.9 cm: 6%

 \Rightarrow 5 - 5.9 cm: 7%

⇒ 6.0 or greater: 16%

Davies et al. ATS 2002;73:17-28

- ⇒ "other" vascular conditions predicted worse outcomes (CVA, CAD, AAA)
- ⇒ "Pulmonary" worse outcomes
- → Male gender protective
- ⇒ Mean growth rate 0.10 cm/year

Davies et al. ATS 2002;73:17-28

Davies et al. ATS 2002;73:17-28

Connective Tissue

- ⇒ Loeys-Dietz: 4 cm
- → Marfan and others: 4.5 cm

Bicuspid AoV

- ⇒ 1-2% population
- ⇒ "most" will have an issue (3/4 stenosis)
- ⇒9 18 fold increase in Ao dilatation
- ⇒ Apoptosis of neural crest derivatives
- ⇒ Discuss surgery for aneurysm 4.5 cm

Diagnosis

- ⇒ History:
 - ⇒ Asymptomatic
 - ⇒ Pain
 - $\Rightarrow PMHx$
 - ⇒ Fam hx
 - ⇒ Social hx

Diagnosis

- ⇒ Physical:
 - ⇒ vitals
 - ⇒ Cardiopulmonary
 - ⇒ Vascular exam

Diagnosis

- $\Rightarrow CT$
- ⇒ TTE
- ⇒ TEE
- ⇒ Measurement mindful of axis

De Bakey

- Type I Originates in the ascending aorta, propagates at least to the aortic arch and often beyond it distally
- Type II Originates in and is confined to the ascending aorta
- Type III Originates in the descending aorta and extends distally down the aorta or, rarely, retrograde into the aortic arch and ascending aorta

Stanford

- Type A All dissections involving the ascending aorta,
 - regardless of the site of origin
- Type B All dissections not involving the ascending aorta

Aortic Dissection

- ⇒ Risk factors (dp/dt)
 - *⇒* Aneurysm
 - ⇒ Connective tissue d/o
 - ⇒ Bicuspid AoV and AI
 - ⇒ Smoking

Aortic Dissection

- ⇒ Type A
 - ⇒ Immediate surgery
 - ⇒2% risk of death per hour in first 48 hours

Aortic Dissection

Hypothermic Circulatory Arrest

- Barnard 1963
 - ⇒2 patients, one survived
 - ⇒ 4/5 patients died
- Griepp 1975
 - ⇒ First series of patients ascending aortic aneurysms

BRAIN PROTECTION: 656 DHCA

Time (minutes)	Stroke
7–29	4%
30–34	7.5%
45-59	10.7%
60-120	14.6%

Univariate: Age, CVA, CA time, CPB time, +Desc repair

Multivariate: CVA, Desc/TAA/TAAA repair, CPB time (AR)

Aortic Dissection

- ⇒ Type B
 - ⇒ Medical treatment

Goals of surgery Type A

- ⇒ Competent Aov
- ⇒ Replaced ascending to prox arch
- ⇒ Recontructed root
- ⇒Distal "type B" aorta

Figure 69C-4 Schematic illustration of classic aortic dissection with a distinct intimal flap separating the true and false lumina (left); penetrating atherosclerotic ulcer with a localized intimal lesion burrowing into the media and leading in some cases to localized dissection (middle); and intramural hematoma without intimal lesion (right).

(From Coady MA, Rizzo JA, Elefteriades JA: Pathologic variants of thoracic aortic dissections. Penetrating atherosclerotic ulcers and intramural hematomas. Cardiol Clin 17:637–657, 1999, with permission.)

De Bakey

- Type I Originates in the ascending aorta, propagates at least to the aortic arch and often beyond it distally
- Type II Originates in and is confined to the ascending aorta
- Type III Originates in the descending aorta and extends distally down the aorta or, rarely, retrograde into the aortic arch and ascending aorta

Stanford

- Type A All dissections involving the ascending aorta,
 - regardless of the site of origin
- Type B All dissections not involving the ascending aorta

Descending Aortic Dissection

- Usually classified as distal to the Left Subclavian Artery
- Multiple re-entry tears with a true and false lumen
- Usually not initially aneurysmal
- Perfusion of major branch vessels is paramount

Type B dissections stratification

 Acute uncomplicated- relative symptom free with chest pain and other symptoms resolving with blood pressure control; Medical Mgmt

 Acute complicated- mal-perfusion to visceral, renal, carotid, spinal cord, or mesenteric vessels. Also includes rupture, uncontrolled HTN, persistent pain; Surgical Mgmt

Type B dissection stratification

 Chronic Type B dissection- typically defined as >14 days from initial presentation. These are managed depending on clinical changes and symptoms

 Try to manage patients medical until they become Chronic Type B dissections. Surgical intervention within the first 2 weeks has a markedly higher morbidity and mortality rate.

Initial treatment

- Immediate management of pain and elevated blood pressure.
- Target Systolic pressure of less than 100-110mmhg
- Beta-blocker for HR<60
- Addition of calcium channel blockers to reduce heart rate often required
- Addition of vasodilators only after Betablockade. (nitroprusside)

Instead-XL Trial

- Trial looking at OMT (optimal medical management) (n=68) vs TEVAR + OMT (n=72) in 140 patients over 5 years with chronic type B dissections.
- Initially there was little significance between the groups.
- At 2-5 years however, significant differences were seen.

INSTEAD-XL Trial

Landmark analysis between TEVAR and OMT reveal:

- All cause mortality significant (0% vs 16.9% p=.0003)
- Aortic specific mortality (0% vs 16.9% p=.0005)
- Progression of disease (4.1% vs 28.1%; p=004)

INSTEAD XL Conclusions

 Benefit of TEVAR in chronic Type B dissections is not realized until years 2-5.

 Not unreasonable to proceed with endovascular treatment if life expectancy is great than 2 years.

Other Type B studies

- ⇒ Leshnower ATS 2018;105:31-9 398 aTBAD
 - ⇒46% OMT patients need TEVAR
 - ⇒ Excellent job of TEVAR w complic
 - ⇒5% mortality
- ⇒ ADSORB trial (aTBAD random)
 - ⇒ No diff in mortality at 1 yr
- ⇒INSTEAD trial: "subacute" and chronic

DISSECTIONS AT A GLANCE

- Acute uncomplicated type B thoracic dissections should first be treated with medical management.
- Acute complicated type B thoracic dissections are best managed by endovascular stent graft treatment.
- Chronic type B thoracic dissections can be managed medically, with surgery, or by stent graft treatment when there is expansion of the false lumen.
- Type A aortic dissections should be treated with open surgery.

Three Things

- Ctscan chest w or w/o
- Treat hypertension/stop smoking, aggressively treat CAD, pulm disease
- 5.0 cm (*), close scrutiny on women

Three Things: Surgery

- Symptoms/progressive Al
- operate before 6 cm
 - Serial imaging; rate of 10% incr in size over 6 – 12 mos (5mm)
- Influence of etiology

Etiology

- Bicuspid AoV: 4.5 cm (esp w AI)
- Marfan: 4.5 cm
- Loey-Dietz: 4.0 cm
- Family or personal history of aortic syndromes or uexplained sudden death: 4.5 cm

Aortic transection

Dissection

